Quantcast
Channel: OpenCV Q&A Forum - RSS feed
Viewing all articles
Browse latest Browse all 2088

Difference in same operations between Python and C++ OpenCV Code

$
0
0
I've been working on BRISQUE IQA for Python and C++ for a while now. There is a set of code in the source code for C++ : Note: In the given code, orig_bw is the input image I've read using imread function (in grayscale). > int scalenum = 2; for (int itr_scale = 1; itr_scale<=scalenum; itr_scale++) { Size dst_size(orig_bw.cols/cv::pow((double)2, itr_scale-1), orig_bw.rows/pow((double)2, itr_scale-1)); Mat imdist_scaled; resize(orig_bw, imdist_scaled, dst_size, 0, 0, INTER_CUBIC); // INTER_CUBIC imdist_scaled.convertTo(imdist_scaled, CV_64FC1, 1.0/255.0); Mat mu(imdist_scaled.size(), CV_64FC1, 1); GaussianBlur(imdist_scaled, mu, Size(7, 7), 1.166); Mat mu_sq(imdist_scaled.size(), CV_64FC1, 1); mu_sq = mu.mul(mu); //compute sigma Mat sigma(imdist_scaled.size(), CV_64FC1, 1); sigma = imdist_scaled.mul(imdist_scaled); GaussianBlur(sigma, sigma, Size(7, 7), 1.166); subtract(sigma, mu_sq, sigma); cv::pow(sigma, double(0.5), sigma); //compute structdis = (x-mu)/sigma add(sigma, Scalar(1.0/255), sigma); //cvAddS(sigma, cvScalar(1.0/255), sigma); Mat structdis(imdist_scaled.size(), CV_64FC1, 1); subtract(imdist_scaled, mu, structdis); divide(structdis, sigma, structdis); //cvDiv(structdis, sigma, structdis); //Compute AGGD fit double lsigma_best, rsigma_best, gamma_best; structdis = AGGDfit(structdis, lsigma_best, rsigma_best, gamma_best); So this is nothing major what's happening above, just gaussian blur, addition, division and multiplication operations. I tried to convert the above set to python as follows: Note: In the given code, im_ is the input image I'm taking using imread function. I'm just testing for one iteration, and there is some change in the amount of negative pixels + positive pixels in structdis. > scalenum = 2 feat = [] im_original = im_.copy() for itr_scale in range(scalenum): im = im_original.copy() im = im / 255.0 mu = np.zeros((im.shape[0], im.shape[1]), dtype="float64") mu += 255.0 mu_ = cv2.GaussianBlur(im, (7, 7), 1.166) mu = mu_.copy() mu_sq = mu * mu sigma = im * im sigma = cv2.GaussianBlur(sigma, (7, 7), 1.166) sigma = mu_sq - sigma sigma = abs(sigma) ** 0.5 sigma = sigma + 1.0/255 structdis = mu - im structdis /= sigma ''' sigma = np.sqrt(abs(cv2.GaussianBlur(im*im, (7, 7), 1.166) - mu_sq)) structdis = (mu-im)/(sigma+(1.0/255)) ''' structdis = AGGDfit(structdis) Now, the AGGDfit function has some operations where it finds the number of positive pixel points and the negative pixel points, so for both the total number of negative and positive pixel points differ by a small amount (around 300-400) [here positive means > 0 and negative means < 0, and NOT >= or <=] . Why would that be? Is there any difference possible in the outputs of GaussianBlur of C++ and Python APIs?

Viewing all articles
Browse latest Browse all 2088

Trending Articles