Quantcast
Channel: OpenCV Q&A Forum - RSS feed
Viewing all articles
Browse latest Browse all 2088

Chessboard and Circle calibration provide radically different results

$
0
0
I have a 35mm nominal focal length camera that I'm trying to calibrate using a PyQt front end I'm building onto OpenCV's python library. It finds and displays matched points. Everything works except for the returns on `cv2.calibrateCamera()` when using a 4 x 11 asymmetric circle grid and `cv2.findCirclesGrid()`. Using a 6 x 9 chessboard pattern, I obtain a focal length (converted to mm) of 35.8 mm. I'd accept this for now with the 35mm lens I'm using. When I use the same camera/lens and a circle grid pattern I obtain a focal length of 505.9 mm. This is clearly wrong. The k and p coefficients are also enormous. What am I missing? See code below. Edited down to show only relevant bits. Some variables are defined elsewhere. # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) params = [] def objParams (grid): if grid == "Checkerboard": param1 = np.zeros((6 * 9, 3), np.float32) param2 = np.mgrid[0:9,0:6].T.reshape(-1,2) elif grid == "Circle Grid": param1 = np.zeros((4 * 11, 3), np.float32) param2 = np.mgrid[0:4,0:11].T.reshape(-1,2) params.append(param1) params.append(param2) objParams(pattern) objp = params[0] objp[:, :2] = params[1] # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. images = glob.glob(folder + '/*.jpg') i = 0 for fname in images: img = cv2.imread(fname) smimg = cv2.resize(img, (0, 0), fx=scaleTo, fy=scaleTo) gray = cv2.cvtColor(smimg, cv2.COLOR_BGR2GRAY) # step counter i += 1 # Find the chess board corners if pattern == 'Checkerboard': print("Now finding corners on image " + str(i) + ".") ret, corners = cv2.findChessboardCorners(gray, (9, 6), None) # If found, add object points, image points if ret == True: print("Corners found on image " + str(i) + ".") objpoints.append(objp) cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) imgpoints.append(corners) print("Drawing corners on image " + str(i) + ".") # Draw and display the corners cv2.drawChessboardCorners(smimg, (9, 6), corners, ret) if saveMarked == True: cv2.imwrite(os.path.join(outfolder, os.path.basename(fname)), smimg) cv2.imshow(os.path.basename(fname), smimg) cv2.waitKey(500) cv2.destroyAllWindows() elif pattern == 'Circle Grid': print("Now finding circles on image " + str(i) + ".") ret, circles = cv2.findCirclesGrid(gray, (4,11), flags = cv2.CALIB_CB_ASYMMETRIC_GRID) # If found, add object points, image points if ret == True: print("Circles found on image " + str(i) + ".") objpoints.append(objp) imgpoints.append(circles) # Draw and display the circles cv2.drawChessboardCorners(smimg, (4, 11), circles, ret) if saveMarked == True: cv2.imwrite(os.path.join(outfolder, os.path.basename(fname)), smimg) cv2.imshow(os.path.basename(fname), smimg) cv2.waitKey(500) cv2.destroyAllWindows() ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], paramMtx, None, None) **EDIT:** Here are the outputs as well as my pretty print statements: **Chessboard:** camera matrix: [[ 1.88284099e+03 0.00000000e+00 9.17371014e+02] [ 0.00000000e+00 1.88512764e+03 4.92135568e+02] [ 0.00000000e+00 0.00000000e+00 1.00000000e+00]] distortion coefficients: [[ 6.84320591e-02 2.23885561e-02 -4.68515125e-03 1.36915007e-05 8.41989278e+00]] Calibrated Focal Length (mm): 35.8333816671 PPA X (px): 3669.48405497 PPA Y (px): 1968.54227198 k1: 0.0684320591357 k2: 0.0223885561237 k3: 8.41989278488 p1: -0.00468515124597 p2: 1.36915007217e-05 2.33% difference between nominal and calibrated focal length RMS reprojection error (px): 0.438001043203 **Circle grid:** camera matrix: [[ 1.73132731e+04 0.00000000e+00 7.77840540e+02] [ 0.00000000e+00 3.58839571e+04 2.71340491e+02] [ 0.00000000e+00 0.00000000e+00 1.00000000e+00]] distortion coefficients: [[ 8.45040736e+01 -2.60062724e+04 -8.98376313e-01 -2.19077639e-01 1.46813984e+03]] Calibrated Focal Length (mm): 505.905658805 PPA X (px): 3111.36215828 PPA Y (px): 1085.36196308 k1: 84.5040736301 k2: -26006.2723672 k3: 1468.13984356 p1: -0.898376312689 p2: -0.219077638716 93.08% difference between nominal and calibrated focal length RMS reprojection error (px): 34.0621258094

Viewing all articles
Browse latest Browse all 2088

Trending Articles